Inheritance

Introduction

When creating a new class, instead of writing completely new data members and member functions, the programmer can decide in some cases that the new class is to inherit the data members and member functions of a previously defined base class. The new class is referred as a derived class. Each derived class itself becomes a candidate to be a base class for some future derived class. With single inheritance, a class is derived from one base class.

A derived class can add data members and member functions of its own. Also, we will add a new form of member access control – protected access. Derived classes and their friends can access protected base class members.

Inheritance forms tree like hierarchical structures.

For example let’s consider the Shape hierarchy:

Shape

TwoDimensionalShape
ThreeDimensionalShape

Circle
Square
 Triangle
Sphere
Cube
 Cylinder

Basic inheritance mechanism

When a class inherits another it uses this general form:

class derived-class-name : access base-class-name{

//derived class definition

};

The base class access specifier must be either public, private or protected. The most commonly used specifier is public. In the case of use of a public access specifier, all public members of the base class become public members of the derived class.

Let us consider the following example:

Example 1:
#include <iostream>

using namespace std;

class base1{

public:

void set(int a, int b)

{i=a; j=b;}

void print() {cout << i<<” “<<j<<”\n”;}

private:

int i;

int j;

};

class derived1: public base1{

public:

derived1 (int x) {k=x;}

void printk() {cout <<k<<”\n”;}

private:

int k;};

int main(){

derived1 ob(3);

ob.set(1,2);//access member of base class

ob.print();//access member of base class

ob.printk();//access member of derived class

return 0;}

Example 2:

#include<iostream>
using namespace std;

class Shapes{

public:

Shapes();

void set(int,int);

void print();

int length;

int width;

};

Shapes::Shapes(){

length=0;

width=0;

}

void Shapes::set(int l, int w){

length=l;

width=w;

}

void Shapes::print(){

cout<<length<<" "<<width;

}

class derivedSquare:public Shapes{

public:

//derivedSquare();

int area();

};

int derivedSquare::area(){

return width*width;

}

int main(){

derivedSquare a;

a.set(3,4);

a.print();

cout<<endl;

cout<<a.area();

}

Questions to solve:

1. Create a base class called Circle with public members radius, setradius() and printradius() and subclasses Cylinder, Sphere and Cone find the volumes using the radius of the base class.

2. Create a base class called School with subclasses Principal, VicePrincipal, Administration, Staff, Students and Custodial.

3. Create a base class Quadrilateral and subclasses Trapezoid, Parallelogram, Rectangle and Square.
4. Do some research and find the difference between protected, private and public type.

5. Create your base class with subclasses. Try to use protected type.
