Functions Review

Introduction

A function is a self-contained block of code with a specific purpose.

You pass information to a function by means of arguments specified when you invoke (call) it.

These arguments need to correspond with the parameters appearing in the definition of the function. The arguments that you specify replace the parameters used in its definition when the function is executed. The code in the function then executes as if it was written using your argument values.

Don’t want to return anything, and then return type is VOID

Example 1.

int main(){

.

.

.

cout << AddInts(2, 3); // function call

.

.

.

return 0;

}

// function definition

int - return type AddInts (int i, int j) –must have type and name of variable

{

return i+j;

}

Example 2.

//Declaring and writing your own C++ functions

 #include <iostream>

 using namespace std;

 int square(int); // function prototype

 int main()

 {

 for (int x = 1; x <= 10; x++)

 cout << square(x) << " ";

 cout << endl;

 return 0;

 }

 // Function definition

 int square(int y)

 {

 return y * y;

 }

Exercise: Declare and write a function int cube (int) to the program and make all the necessary changes to print the cubes of first 10 integers.

#include <iostream>

 using std::cout;

 using std::endl;

 int cube(int); // function prototype

 int main()

 {

 for (int x = 1; x <= 10; x++)

 cout << cube(x) << " ";

 cout << endl;

 return 0;

}

 // Function definition

 int cube(int y)

 {

 return y * y * y;

}

Structure of a function

Example 1. Let’s write a function called power that computes xn:

double power (double x, int n)
//function header

{

double result = 1.0;

for (int i=1; i<=n; i++)

result = result * x;

return result;

}

-The function prototype

The general form of a function header:

Return-type FunctionName (parameter_list)

-The function body

The desired computation in a function is performed by the statements in the function body following the function header.

· The return statement

This statement returns the value of its calculation to the point where the function was called.

The general form:

return expression ;

where expression must evaluate to the value of the type specified in the function header for the return value.

-Using a function

You must declare a function using a statement called a function prototype.

It specifies the parameters to be passed to the function, the function name, and the type of return value.

For example a function prototype declaring our power function would look like this:

double power(double value, int index);

Example 2. Write a C++ program that uses our function power to print

5.0 squared = 25

3.0 cubed = 27

x = 81

#include <iostream>

using namespace std;

double power (double x, int y); //function prototype
int main() {

cout << "5.0 squared = " << power (5.0, 2) << endl;

cout << "3.0 cubed = " << power (3.0, 3)<< endl;

cout << "x = " << power (9.0, 2)<<endl;

 return 0;

}

double power (double x, int y)
//function header

{

double result = 1.0;

for (int i = 1 ; i <= y ; i++)

result = result * x;

return result;

}

Example 3. Write a C++ program that uses your own function that finds the largest of 3 integers.

#include <iostream>

int largest(int, int, int);//function prototype

using namespace std;

int main()

{

int first, second, third;

cout << " Enter three numbers to be compared " << endl;

cin >> first;

cin >> second;

cin >> third;

cout << "The largest is: " << largest(first, second, third) << endl;//function call; a copy is made and sent down to the function

return 0;

}

int largest(int a, int b, int c) //first, second, third is sent here

{

if ((a > b) && (a > c)) return a;

else

if ((b > a) && (b > c)) return b;

else return c;

}

Example 4. Find the error in each of the following statements:

a) int f(int j, k, float l)

int f(int j, int k, float l)

b) int g(void) {

cout << “inside function g”<<endl;

int h(void)

{

 cout << “inside function h”<<endl;

}

}

not allowed to define a function within another one

c) int sum(int x, int y)

{

int result;

result = x + y;

}

must return something

Recursive functions

Recursive problem-solving approaches have a number of elements in common. A recursive function is called to solve a problem. The function actually knows how to solve only the simplest case, or so-called base case. If the function is called with a base case, the function simply returns a result. If the function is called with a more complex problem, the function divides the problem into two pieces: a piece that the function knows how to do and a piece that the function does not know how to do. The second piece is usually simpler version of the original problem. Because this new problem looks like the original problem, the function calls a fresh copy of itself to go to work on the smaller problem--this is referred to as a recursive call and is also called the recursion step. The recursion step also includes the keyword return, because its result will be combined with the portion of the problem the function knew how to solve to form a result that will be passed back to the original caller, possibly main.

The recursion step executes while the original call to the function is still open, i.e., it has not yet finished executing. The recursion step can result in many more such recursive calls as the function keeps dividing each new sub problem with which the function is called into two pieces. In order for the recursion to eventually terminate, each time the function calls itself with a slightly simpler version of the original problem this sequence of smaller and smaller problems must eventually converge to the base case. At that point, the function recognizes the base case, returns a result to the previous copy of the function, and a sequence of returns continues all the way up the line until the original call of the function eventually returns the final result to main.

Let’s consider an example that we have solved previously.

Example 1. Write a recursive C++ function that for a given base x and exponent n finds the power xn.

Previously the problem was solved in the following way:

double power (double x, int n)
//iterative solution

{

double result = 1.0;

for (int i=1; i<=n; i++)

result = result * x;

return result;

}

#include <iostream>

using namespace std;

double power(double, int);

int main (void)

{

double base;

int exponent;

cout << "Enter a base" << endl;

cin >> base;

cout << "Enter the exponent";

cin >> exponent;

cout << power (base, exponent);

return 0;

}

double power (double x, int n)
//recursive solution

{

double result;

if (n == 1)

return result = x;

else return x*power(x, n-1);

}

Visualizing recursion. Modify your recursive function power(b, e) to print its local variable and recursive call parameters. For each recursive call, display the outputs on a separate line and add a level of indentation.

[image: image1.png][onter the hase
g

onter the exponent
4

hasexpoer (3, 43
hasexpoer <3, 3>
hasexpoer <3, 2>
hasexpover (3, 1>
fthe final value is 81
[Press any key to continue

#include <iostream>

double power(double, int);

int main() {

double base;

int exponent;

cout << "Enter a base\n";

cin >> base;

cout << "Enter the exponent\n";

cin >> exponent;

cout << "The final value is " << power(base, exponent) << endl;

return 0;

}

double power (double x, int n) {

for (int i=1;i<=n;i++)

cout << "\t";

cout << "base*power (" << x << "," << n << ")" << endl;

if (n == 1) {

return x;

} else {

return x * power(x, n-1);

}

}

Example 2. Write a recursive function that finds n! .

Just to remind you: n! = n(n-1)(n-2)…1.

#include <iostream>

using namespace std;

int factorial(int);

int main (void) {

int number;

cout << "Enter a number" << endl;

cin >> number;

cout << factorial (number) << endl;

return 0;

}

int factorial (int num)
//recursive solution

{

int result;

if (num == 1)

return result = num;

else

return num * factorial(num-1);

}

Example 3. Write a recursive function called multiply that multiplies two integers a and b.

#include <iostream.h>

int multiply(int, int);

int main() {

int num1, num2;

cout << "Enter 1st number for multiply\n";

cin >> num1;

cout << "Enter 2nd number for multiply\n";

cin >> num2;

cout << num1 << "*" << num2 << " = " << multiply(num1,num2) << endl;

return 0;

}

int multiply (int a, int b)

{

if (b==1)

return a;

else

return a + multiply(a, b-1);

}

Example 4. Write a program that finds the sum of first n numbers by calling a function called sum. The function should be implemented recursively.

#include <iostream>

using namespace std;

int sum(int);

int main (void) {

int number;

cout << "Enter a number" << endl;

cin >> number;

cout << sum (number) << endl;

return 0;

}

int sum (int num){ //recursive solution

if (num == 1)

return num;

else

return num + sum(num-1);

}

Example 5. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, … begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum of the previous two Fibonacci numbers. Write a C++ program that finds n-th element of Fibonacci sequence.

#include <iostream.h>

int fibonacci(int);

int main() {

int num1;

cout << "Enter n-th sequence number of Fibonacci\n";

cin >> num1;

cout << num1 << "-th fabonacci number = " << fibonacci(num1) << endl;

return 0;

}

int fibonacci(int n)

{

if (n == 0)

return 0;

else if (n == 1)

return 1;

else

return fibonacci(n-1) + fibonacci(n-2);

}

Example 6. What does the following recursive function do?

a)

int mistery (int a, int b)

{

if (b == 1)

return a;

else

return a + mistery(a, b-1);

}

b)

int mistery2 (int n)

{

if (n==1)

return n;

else

return n + mistery2(n-1);

}

Example 7. Write a recursive function gcd that returns the greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x%y), where % is the modulus operator.

#include <iostream.h>

int gcd(int, int);

int main() {

int num1, num2;

cout << "Enter a number\n";

cin >> num1;

cout << "Enter another number\n";

cin >> num2;

cout << "The gcd is " << gcd(num1,num2) << endl;

return 0;

}

int gcd(int x, int y) {

if (y == 0)

return x;

else

return gcd(y,x % y);

}

Problems to solve in C++:

1. Create a program using your function to display a character input by the user.
2. Using your own function write a program that takes an integer parameter and returns the value of the number divided by two.

3. Using your own function write a program that returns the minimum of five integers.

4. Write a program which determines whether a number is even or odd using functions.
5. Using recursive function, find the fifth term in a Fibonacci sequence.
6. Write a C++ program that calls your function called pattern that prints the following pattern:

@@@

@@@

@@@

Let the user enter an arbitrary number for the dimension of the square. For example, if number 5 is entered your program should print a 5 by 5 pattern.

7. Write a function called flip that simulates flipping of a coin. Use 1 to represent a head and 0 to represent a tail.

a) Print the result of 20 calls to the function

b) Use the function large number of times (1000 calls for example) and output the total number of times a head and a tail is obtained.

More problems to try in C++:
1. Write a program with a function that finds the sum of the digits of a three-digit number passed to it.

2. Write a program with a function distance that takes coordinates of both points as decimal numbers and returns the distance between the points.

3. Using your own function write a program that takes two integers and returns true if the first integer divides evenly into the second one.

_105064140.doc
[image: image1.png][onter the hase
g

onter the exponent
4

hasexpoer (3, 43
hasexpoer <3, 3>
hasexpoer <3, 2>
hasexpover (3, 1>
fthe final value is 81
[Press any key to continue

