Using the const Qualifier with Pointers

The const qualifier informs the compiler that the value of particular variable should not be modified. If the value of the variable should not be changed within the function to which it is passed, the parameter should be declared const to ensure that it is not accidentally modified.

There are four ways to pass a pointer to a function: a non-constant pointer to non-constant data, a non-constant pointer to constant data, a constant pointer to non-constant data and a constant pointer to constant data. Each combination provides a different level of access privileges.

The highest access is granted by a non-constant pointer to non-constant data

Example 1: Write a program that converts lowercase letters, entered by user, to uppercase letters. Write a function convertToUppercase that returns nothing and receives a pointer to the string.

Hint: you can use the following functions that can be found in the character handling library:

islower – takes one character as an argument and returns true if the character is lowercase letter

toupper – takes one character as an argument, if the character is lower case corresponding uppercase letter is returned.
Solution:

// Converting lowercase letters to uppercase letters

// using a non-constant pointer to non-constant data

void convertToUppercase(char *);

int main()

 {

 char string[] = "characters entered";

 cout << "The string before conversion is: " << string;

convertToUppercase(string);

 cout << "\nThe string after conversion is: "

 << string << endl;

 return 0; }

 void convertToUppercase(char *sPtr)

 { while (*sPtr != '\0')

{ if (islower(*sPtr))

 *sPtr = toupper(*sPtr); // convert to uppercase

 ++sPtr; // move sPtr to the next character

 }

}

A non-constant pointer to constant data is a pointer that can be modified to point to any data item of the appropriate type, but the data to which it points can’t be modified through that pointer.

Example 2:
Read a string from the keyboard and send it to a function called printCharacters that prints the string character by character.

Solution:

#include <iostream>

using namespace std;

void printCharacters(const char*);

int main()

{

char string1[40];

cout << "enter a string" << endl;

getline (cin,string1);

cout << "the string is:"<<endl;

printCharacters(string1);

return 0;

}

void printCharacters(const char* chptr)

{

while (*chptr !=’\ 0’){

cout << *chptr;

chptr = chptr + 1;

}

}

A constant pointer to non-constant data is a pointer that always points at the same memory location and the data at that location can be modified through the pointer.
Example3:
Let’s try to modify a constant pointer to non-constant data

#include <iostream>

int main ()

{

int x, y;

int *const ptr = &x;

*ptr = 7;

ptr = &y;

return 0;

}

Finally, constant pointer always points to the same memory location and the data at the memory location cannot be modified using the pointer. Let’s see an attempt to modify a constant pointer to constant data.
Example 4:
#include <iostream>

using namespace std;

int main()

{

int x=5, y;

const int *const ptr = &x;

cout << *ptr << endl;

*ptr = 7;

ptr = &y;

return 0;

}
Q1: Using the previous examples try to write a program for each case. Make up your own questions for each type.
