Example 1.

Write a C++ program that uses the definition of the class Time and definition of its four member functions as specified previously. Your program should instantiate (declare) a single object of class Time. When the object is instantiated, the Time constructor function should initialize each data member of the function to 0. The initialization is done automatically but you should call printUniversal and printStandard to confirm this.

Next, set time to a valid time using setTime member function and print the time again in both formats. Then attempt setting time to an invalid time and print it in both formats.

The desired output would be:

The initial universal time is 00:00

The initial standard time is 12:00:00 AM

Universal time after setTime is 13:20

Standard time after setTime is 1:27:06 PM

After attempting invalid setting:

Universal time: 00:00

Standard time : 12:00:00 AM

Solution:

#include <iostream>

using namespace std;

class Time {

public:

 Time(); // constructor

 void setTime(int , int , int); // set hour, minute, second

 void printUniversal(); // print universal time format

 void printStandard(); // print standard time format

 private:

 int hour; // 0 - 23

 int minute; // 0 - 59

 int second; // 0 - 59

 };

Time ::Time(){

hour=0;

minute=0;

second=0;

}

// Set a new Time value using military time. Perform validity

// checks on the data values. Set invalid values to zero.

void Time::setTime(int h, int m, int s)

 {

 hour = (h >= 0 && h < 24) ? h : 0;

 minute = (m >= 0 && m < 60) ? m : 0;

 second = (s >= 0 && s < 60) ? s : 0;

 }

// Print Time in universal format

void Time::printUniversal()

 {

 cout << (hour < 10 ? "0" : "") << hour << ":"

 << (minute < 10 ? "0" : "") << minute;

 }

// Print Time in standard format

 void Time::printStandard()

 {

 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

 << ":" << (minute < 10 ? "0" : "") << minute

 << ":" << (second < 10 ? "0" : "") << second

 << (hour < 12 ? " AM" : " PM");

}

int main(){

Time t; //instantiate object t of class Time

cout << "The initial military time is ";//let's see the output when t is not initialized

t.printUniversal();

cout << "\nThe initial standard time is ";

t.printStandard();

t.setTime(13, 27, 6);//t is initialized by using proper values for its data members

cout << "\n\nMilitary time after setTime is called is ";

t.printUniversal();

cout << "\nStandard time after setTime is called is ";

t.printStandard();

t.setTime(99, 99, 99);//attempt to initialize t to improper values

cout << "\n\nMilitary time after setTime is called with invalid values is ";

t.printUniversal();

cout << "\nStandard time after setTime is called with invalid values is ";

t.printStandard();

cout << endl;

return 0;}

Q1:
Define a class called Date whose data members are called Month, Day, and Year and whose member function printDate is used to print the date. Write a program that uses your class to print a date.

Using Constructors to initialize class objects

When a class object is created, its members can be initialized by that class’ constructor function.

A constructor is a class member function with the same name as a class.

When an object of a class is declared, initializers can be provided in parenthesis to the right of the object name.

Constructors can contain default values. Let’s change our Time constructor function to include default arguments of zero for each variable.

Q2:

Your task is to declare five objects of type Time t1(initialize nothing), t2(initialize only hours), t3(initialize hours and minutes), t4(initialize everything) and t5(try to initialize to not acceptable values).

Use the following class definitions and function definitions to print out the content of each of the objects declared preceded by an appropriate message.
Solution:
#include <iostream>
using std::cout;

using std::endl;

class Time {

public:

 Time(int=0,int=0,int=0);

 void setTime(int , int , int);

 void printUniversal();

 void printStandard();

 private:

 int hour;

 int minute;

 int second;

 };

Time::Time(int hr,int min,int sec)

{setTime(hr, min, sec); }

void Time::setTime(int h, int m, int s)

 {

 hour = (h >= 0 && h < 24) ? h : 0;

 minute = (m >= 0 && m < 60) ? m : 0;

 second = (s >= 0 && s < 60) ? s : 0;

 }

 void Time::printUniversal()

 {

 cout << (hour < 10 ? "0" : "") << hour << ":"
 << (minute < 10 ? "0" : "") << minute;

 }

 void Time::printStandard()

 {

 cout << ((hour == 0 || hour == 12) ? 12 : hour % 12)

 << ":" << (minute < 10 ? "0" : "") << minute

 << ":" << (second < 10 ? "0" : "") << second

 << (hour < 12 ? " AM" : " PM");

 }

int main() {

Time t1,t2(12),t3(13,45),t4(12, 24, 46),t5(99,99,99);

cout << "The initial Time is (dd/mm/yy):\n";

t1.printUniversal();

t1.printStandard();

cout << endl;

cout << "The Time after hour has been set is:\n";

t2. printUniversal();

t2.printStandard();

cout << endl;

cout << "The Time after hour & minute has been set is:\n";

t3. printUniversal();

t3.printStandard();

cout << endl;

cout << "The Time after everything has been set is:\n";

t4. printUniversal();

t4.printStandard();

cout << endl;

cout << "The Time after inappropriate values has been set is:\n";

t5. printUniversal();

t5.printStandard();

cout << endl;

return 0;

}

Q3:
Create a class Rectangle. The class has data members length and width, each of which defaults to 1. It has member functions that calculate the perimeter and the area of the rectangle. It has set and get functions for both length and width. The set functions should verify that length and width are each floating-point numbers larger than 0.0 and smaller than 20.0.

Solution:
#include <iostream>
using namespace std;

class Rectangle{

public:

 Rectangle();

 void setlw(double , double);

 double getarea();

 double getperimeter();

 private:

 double length;

 double width;

 };

Rectangle::Rectangle()

{length=1;

width=1;

}

void Rectangle::setlw(double l, double w)

 {

 length=(l>0.0 &&l<20.0?l:0); //checks if the length is a decimal number between 0.0 and 20.0

 width=(w>0.0 &&w<20.0?w:0); //checks if the width is a decimal number between 0.0 and 20.0

 }

 double Rectangle::getarea()

 {

 return length*width;

 }

 double Rectangle::getperimeter()

 {

 return length+length+width+width;

 }

int main() {

Rectangle r;

cout<<r.getarea()<<endl;

cout<<r.getperimeter()<<endl;

r.setlw(2,10);

cout<<r.getarea()<<endl;

cout<<r.getperimeter()<<endl;

r.setlw(15,25);

cout<<r.getarea()<<endl;

cout<<r.getperimeter()<<endl;

return 0;

}

