

Call by value, call by reference

There are 2 mechanisms used in C++ to pass parameters to functions: call-by-value and call-by-reference.

When an argument is passed call-by-value, a copy of the argument’s value is made and passed to the called function. Changes to this copy do not affect the original variable’s value in the caller.

With call-by-reference, the caller gives the called function the ability to access the caller’s data directly. To indicate that a function parameter is passed by reference, simply follow the parameter’s type in the function prototype by an ampersand (&); use the same convention when listing the parameter’s type in the function header. For example, the declaration

int &count can be read “count is a reference to an int”. In the function call simply mention the variable by name and it will be passed by reference. As always, the function prototype and header must agree.
To sum up, call by value doesn’t change the original value, while call-by-reference changes it after the function call is made.
The following example compares call-by-value and call-by-reference.

// Comparing call-by-value and call-by-reference

#include <iostream>

using std::cout;

using std::endl;

int squareByValue(int);

void squareByReference(int &);

int main()

{

int x = 2, z = 4;

cout << "x = " << x << " before squareByValue\n"

<< "Value returned by squareByValue: "

<< squareByValue(x) << endl

<< "x = " << x << " after squareByValue\n" << endl;

cout << "z = " << z << " before squareByReference" << endl;

squareByReference(z);

cout << "z = " << z << " after squareByReference" << endl;

return 0;

}

int squareByValue(int a)

{

return a *= a; // caller's argument not modified

}

void squareByReference(int & cRef)

{

cRef *= cRef; // caller's argument modified

}

Example 1. Write a C++ program with two alternate functions. Each function simply triples the variable count defined in the main(the same as the example above, the only difference is that it multiples the number by itself 3 times). These two functions are:

a) Function tripleCallbyValue that passes a copy of count call-by-value, triples the copy and returns the new value and also returns the initial value of count.

b) Function tripleCallbyReference that passes a copy of count call-by-reference, triples the copy and returns the new value.

Example 2. Write a C++ program with two alternate functions. These two functions are:

a) Write function distancebyvalue that calculates the distance between two points (x1, y1) and (x2, y2).

All the numbers and return values should be of type double.

b) Write function distancebyReference that calculates the distance between two points (x1, y1) and

(x2, y2). All the numbers and return values should be of type double.

Example 3. Create your own program using call by value and call by reference.
