Arrays

Declaration:

In java you have to dynamically allocate an array by using operator new

DataType[] ArrayName; // Declares the array

ArrayName = new DataType[length]; // allocates the array

ex:

int[] array1; // Declares an array of integers

array1 = new int[10]; //Creates an integer array of

length 10, starting at 0

Accessing:

Same as C++,

ArrayName[position]; //Positions start at 0

Getting Length:

ArrayName.length; //returns the length of the array

Initializing:

When initializing you can skip the creating step, the array length will be determined

by the number of values used to initialize the array with.

DataType[] ArrayName = {value, value, value, value, value, ... , value};

Array of Objects:

string[] array1 = { "String One", "String Two", "String Three" };

or

string[] array1 = new string[3]; // this must be initialized explicitly, it is not empty strings to start with

Matrix:

DataType[][] ArrayName =

{

{value, value, value, ... , value},

{value, value, value, ... , value},

{value, value, value, ... , value},

{value, value, value, ... , value}

};

or

DataType[][] ArrayName = new int[4][0]; // this must be initialized explicitly and you must specifiy the length of the primary array

Copying arrays:

void arraycopy(Object source, int srcIndex, Object dest, int destIndex, int length);

[image: image1.png]W

dest

 ex:

char[] copyFrom = { 'd', 'e', 'c', 'a', 'f', 'f', 'e', 'i', 'n', 'a', 't', 'e', 'd' };

char[] copyTo = new char[7];

System.arraycopy(copyFrom, 2, copyTo, 0, 7);

Allocating an array and initializing its elements

 Example 1. Write a program that allocates dynamically an array of length 10. Print its content.

[image: image2.png]E&4 Initializing an Array of int Values

Subscript

2. Initialize the value of your array of length 8 by using an Initializer List

int n[]={5, 10, 15, 20, 25, 30, 35, 40 }

Print the array’s content.

[image: image3.png][initializing an Array with a Dec!

Subscript

Example 3.

Write a program that simulates 6000 rolls of a die. Collect the frequencies in an array. Print the content of the array.

[image: image4.png][Rolling a Die 6000 Times

Frequency
1048
1008
1010

as6

agg

arg

Two dimensional arrays

Example4.

// Initializing multidimensional arrays

// Java core packages
import java.awt.Container;

 // Java extension packages
 import javax.swing.*;

 public class InitArray extends JApplet {
 JTextArea outputArea;

 // set up GUI and initialize applet
 public void init()
 {
 outputArea = new JTextArea();
 Container container = getContentPane();
 container.add(outputArea);

 int array1[][] = { { 1, 2, 3 }, { 4, 5, 6 } };
 int array2[][] = { { 1, 2 }, { 3 }, { 4, 5, 6 } };

 outputArea.setText("Values in array1 by row are\n");
 buildOutput(array1);

 outputArea.append("\nValues in array2 by row are\n");
 buildOutput(array2);
 }

 // append rows and columns of an array to outputArea
 public void buildOutput(int array[][])
 {
 // loop through array's rows
 for (int row = 0; row < array.length; row++) {

 // loop through columns of current row
 for (int column = 0;
 column < array[row].length;
 column++)
 outputArea.append(array[row][column] + " ");

 outputArea.append("\n");
 }
 }
 }

Example 5. Determine the output of the following program

a) // Exercise WhatDoesThisDo.java
2
3 // Java core packages
4 import java.awt.*;
5
6 // Java extension packages
7 import javax.swing.*;
8
9 public class WhatDoesThisDo extends JApplet {
10 int result;
11
12 public void init()
13 {
14 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
15
16 result = whatIsThis(array, array.length);
17
18 Container container = getContentPane();
19 JTextArea output = new JTextArea();
20 output.setText("Result is: " + result);
21 container.add(output);
22 }
23
24 public int whatIsThis(int array2[], int size)
25 {
26 if (size == 1)
27 return array2[0];
28 else
29 return array2[size - 1] +
30 whatIsThis(array2, size - 1);
31 }
32 }

b) WhatDoesThisDo2.java
2
3 // Java core packages
4 import java.awt.*;
5
6 // Java extension packages
7 import javax.swing.*;
8
9 public class WhatDoesThisDo2 extends JApplet {
10
11 public void init()
12 {
13 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
14 JTextArea outputArea = new JTextArea();
15
16 someFunction(array, 0, outputArea);
17
18 Container container = getContentPane();
19 container.add(outputArea);
20 }
21
22 public void someFunction(int array2[], int x, JTextArea out)
23 {
24 if (x < array2.length) {
25 someFunction(array2, x + 1, out);
26 out.append(array2[x] + " ");
27 }
28 }
29 }

Two dimensional arrays

Example5. Initialize 2 two-dimensional arrays array1 and array2 as follows

int array1[][] = { { 1, 2, 3 }, { 4, 5, 6 } };
 int array2[][] = { { 1, 2 }, { 3 }, { 4, 5, 6 } };

Output their content.

/ Use 2-dim array

[image: image5.png]Applet Viewer: Initrray.class

[image: image6.png]= IBM_PRELOAD (C:

Ele Edt View Favortes Toos belp

(€ 7 | aess [ey

Nore & s
[brooksoutz 1Ke
[caavsetin 7*B
= conric ore
[oatats 1ke
[patarz 1Ke
[patazt 1Ke
[paast 1Ke
Qearnt 1s4k8
oorcontoobar 716
Boceary ok
[drvez 1ke
) federal 1Ke
ELTS Leoske
Sfestnta sk
festun sizke
Sfestnfo 2eak
ffestn. i sizke
(3)flesso9.chk e
[Fract 1Ke
Ehbert 261,108k
[merest 3k
10 ok
Biog 1k
[ogrre 1Ke
oz 3k
oo 216
o sk
= ep0s ok
[nasty 1k
v s
oo _hot I
moetect 16
EL 215k
Roazons 4,638,830K8
pagete 216K
Claazsseo_see_sp2 85 eny st0re
Broncomimers e
“lRandaniricges jova ™

lrendal

Type Date Modied
Text Document 20j12/2005 8:33 PM
Text Document 05/03/2005 6145 AM
System fle 03/09/2003 10:44 AM
Text Document 26/02/2005 6:29 PM
Text Document 26/02/2005 6:31 PM
Text Document 141052005 11:13 A
Text Document 14052005 12:12 PM
Applcation Extension 13/02/2004 3:47 PM

The arrayis

orades(]
grades(i]
orades(2)

Lowest grade: 68
Highest grade: 86

TexE Do
ACDSes 9.0BMP I... 17/02/2004 10:31 PM
ACDSes 9.0 GIF I 17/02/2004 10:31 PM
ACDSee 9.0 GIF I 17/02/2004 10:31 PM
System fle 03/09/2003 12:21 PH
Text Document 181212005 9:48 AM

ACDSee 9.0BMP I... 17/02/2004 10:31 PM
ACDSes 9.0BMP Im... 17/02/2004 10:31 PM
MS-D0S Application D4/10/2004 5:23 PM

System fle 1711012008 9:37 PHa
indows Backup Fle 27/10/2006 5:33 PM
System fle 21/10/2008 5:04 P
Appication 26/10/2003 10:49 AM
Java Class Fle 05/12/2004 3148 AM

JavaLanguage Sou... 05/12/2004 843 AM

Example 6. Use a two dimensional array to store marks of three students on the three tests. Output the array. Output the lowest and the highest mark. Output each student’s average fro the three tests as well.

Searching arrays

Often, a programmer will be working with large amounts of data stored in arrays. It may be necessary to determine whether an array contains a value that matches a certain key value. The process of locating a particular element value in an array is called searching. In this section, we discuss two searching techniques—the simple linear search technique and the more efficient binary search technique.

Searching an Array with Linear Search

 Write method linearSearch that uses a for structure containing an if structure to compare each element of an array with a search key. If the search key is found, the method returns the subscript value for the element to indicate the exact position of the search key in the array. If the search key is not found, the method returns -1 to indicate that the search key was not found. If the array being searched is not in any particular order, it is just as likely that the search key will be found in the first element as the last. On average, therefore, the program will have to compare the search key with half the elements of the array.

 Declare a 100-element array filled with random numbers from 1 to 1000. Let the user type the search key.

 The linear search method works well for small arrays or for unsorted arrays. However, for large arrays, linear searching is inefficient. If the array is sorted, the high-speed binary search technique can be used.

Searching a Sorted Array with Binary Search

The binary search algorithm eliminates half of the elements in the array being searched after each comparison. The algorithm locates the middle array element and compares it to the search key. If they are equal, the search key has been found and binary search returns the subscript of that element. Otherwise, binary search reduces the problem to searching half of the array. If the search key is less than the middle array element, the first half of the array will be searched; otherwise, the second half of the array will be searched. If the search key is not the middle element in the specified subarray (piece of the original array), the algorithm repeats on one quarter of the original array. The search continues until the search key is equal to the middle element of a subarray or until the subarray consists of one element that is not equal to the search key (i.e., the search key is not found).

 In a worst-case scenario, searching a sorted array of 1024 elements will take only 10 comparisons using a binary search. Repeatedly dividing 1024 by 2 (because after each comparison we are able to eliminate half of the array) yields the values 512, 256, 128, 64, 32, 16, 8, 4, 2 and 1. The number 1024 (210) is divided by 2 only ten times to get the value 1. Dividing by 2 is equivalent to one comparison in the binary search algorithm. An array of 1,048,576 (220) elements takes a maximum of 20 comparisons to find the key. An array of one billion elements takes a maximum of 30 comparisons to find the key. This is a tremendous increase in performance over the linear search that required comparing the search key to an average of half the elements in the array. For a one-billion-element array, this is a difference between an average of 500 million comparisons and a maximum of 30 comparisons! The maximum number of comparisons needed for the binary search of any sorted array is the exponent of the first power of 2 greater than the number of elements in the array.

 Write a method binarySearch that receives two arguments—an integer array called array2 (the array to search) and an integer key (the search key. If key matches the middle element of a subarray, binarySearch returns middle (the subscript of the current element) to indicate that the value was found and the search is complete. If key does not match the middle element of a subarray, binarySearch adjusts the low subscript or high subscript (both declared in the method), to continue the search using a smaller subarray. If key is less than the middle element, the high subscript is set to middle - 1 and the search continues on the elements from low to middle - 1. If key is greater than the middle element, the low subscript is set to middle + 1 and the search continues on the elements from middle + 1 to high.

Sorting arrays

Sorting data (i.e. placing the data into some particular order such as ascending or descending) is one of the most often used computing applications. We will discuss the simplest known sorting scheme: bubble sort.

The scheme is as follows: on each pass, successive pairs of elements are compared. If a pair is in increasing order , we leave the values as they are. If a pair is in decreasing order, their values are swapped in the array.

Bubble sort.

Write a program that generates 50 random numbers from 1 to 1000 and store them in an array called bubble. Use the scheme described earlier to sort all the values of the array in an increasing order.

22
34
17
10
19
26
37
15
38
17

buble[0] buble[1] buble[2] buble [3] buble [4] buble [5] buble [6] buble [7] buble [8] buble[9]

The First Pass :

22
17
10
19
26
34
15
37
17
38

buble[0] buble[1] buble[2] buble [3] buble [4] buble [5] buble [6] buble [7] buble [8] buble[9]

The Second Pass :

17
10
19
22
26
15
34
17
37
38

buble[0] buble[1] buble[2] buble [3] buble [4] buble [5] buble [6] buble [7] buble [8] buble[9]

The Third Pass

10
17
19
22
15
26
17
34
37
38

buble[0] buble[1] buble[2] buble [3] buble [4] buble [5] buble [6] buble [7] buble [8] buble[9]

The Selection Sort

Selection sort is an easy sorting algorithm to understand and implement. The selection sort algorithm would follow this procedure to sort an array of elements in ascending order: On each pass through the array, we find the smallest element, and place it in the array using the lowest available index.

On the first pass, we check elements 0 .. MAX – 1, and put the smallest found in location 0. The second pass checks elements 1 .. MAX – 1 (the item in location 0 is already sorted), and places the smallest item found in location 1. This algorithm continues for MAX – 1 passes through the array.

Bucket Sort) A bucket sort begins with a single-subscripted array of positive integers to be sorted and a double-subscripted array of integers with rows subscripted from 0 to 9 and columns subscripted from 0 to n - 1, where n is the number of values in the array to be sorted. Each row of the double-subscripted array is referred to as a bucket. Write a function bucketSort that takes an integer array and the array size as arguments and performs as follows:

a) Place each value of the single-subscripted array into a row of the bucket array based on the value’s ones digit. For example, 97 is placed in row 7, 3 is placed in row 3 and 100 is placed in row 0. This is called a “distribution pass.”

 b) Loop through the bucket array row by row, and copy the values back to the original array. This is called a “gathering pass.” The new order of the preceding values in the single-subscripted array is 100, 3 and 97.

 c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).

 On the second pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no tens digit) and 97 is placed in row 9. After the gathering pass, the order of the values in the single-subscripted array is 100, 3 and 97. On the third pass, 100 is placed in row 1, 3 is placed in row zero and 97 is placed in row zero (after the 3). After the last gathering pass, the original array is now in sorted order.

 Note that the double-subscripted array of buckets is 10 times the size of the integer array being sorted. This sorting technique provides better performance than a bubble sort, but requires much more memory. The bubble sort requires space for only one additional element of data. This is an example of the space-time trade-off: The bucket sort uses more memory than the bubble sort, but performs better. This version of the bucket sort requires copying all the data back to the original array on each pass. Another possibility is to create a second double-subscripted bucket array and repeatedly swap the data between the two bucket arrays.

