Review Arrays
Bubble sort :
-Single arrays
for (int pass = 0; pass < arraySize - 1; pass++)
 // loop to control number of comparisons per pass
 for (int j = 0; j < arraySize - 1; j++)
 // compare side-by-side elements and swap them if
 // first element is greater than second element
 if (a[j] > a[j + 1]) {
 hold = a[j];
 a[j] = a[j + 1];
 a[j + 1] = hold;
 }

-Double Arrays
 // find minimum grade

int minimum(int grades[][exams], int pupils, int tests)

 {

 int lowGrade = 100; // initialize to highest possible grade

 for (int i = 0; i < pupils; i++)

 for (int j = 0; j < tests; j++)

 if (grades[i][j] < lowGrade)

 LowGrade = grades[i][j];

 return lowGrade; } // end function minimum

Outputting double arrays:

 // function to output array with two rows and three columns
 void printArray(int a[][3])
 {
 for (int i = 0; i < 2; i++) { // for each row
 for (int j = 0; j < 3; j++) // output column values
 cout << a[i][j] << ' ';
 cout << endl; // start new line of output
 } // end outer for structure
 } // end function printArray
Questions to try:
1. Initialize a single array of size 6, output the range (the difference between the lowest and the greatest number) and the median (the number in the middle).

2. Read numbers from an array and graph the information in the form of a histogram - each number is printed, and then a bar consisting of that many asterisks is printed beside the number.

3. Use a double array of size 3 by 5. Initialize the elements to the first 15 odd numbers. Output the numbers in rows and columns format.
4. Use a function called average that finds the average of 10 values stored in a single array. Output the array and the average.
Bonus:

5. Roll a single six - sided die 600 times and count the number of times each of the six faces occurs. Store the corresponding frequencies in an array. Output the array.
6. Spirals

A spiral of numbers can start and end with any positive integers less than 100. Write a program which will accept two positive integers x and y as input, and output a list of numbers from x to y inclusive, shown in a spiral. You may assume that the end value is greater than or equal to the start value.

A spiral starts with the first number in the centre. The next number appears immediately below the first number. The spiral continues with the numbers increasing in a counterclockwise direction until the last number is printed.

Read the input from the keyboard and display the output on the screen.

Sample session: (User input in italics)

Start value:

10

End value:

27
 27 26

16 15 14 25

17 10 13 24

18 11 12 23

19 20 21 22

Start value:

7

End value:

12

12 11

7 10

8 9

7. A Magic Square

A magic square is a square array of numbers consisting of the distinct positive integers 1, 2, ..., [image: image1.png]

arranged such that the sum of the [image: image2.png]

numbers in any horizontal, vertical, or main diagonal line is always the same number

[image: image3.png]15 15 15
15

A A A
y. > 15
f ¥ > 15
- 15

a) Try to generate another 3 by 3 magic square

b) Try to generate a 5 by 5 magic square (the sum of the rows, columns and diagonals should be 65)

c) Think about an algorithm that can generate magic squares for you

d) Write a program that will generate a 3 by 3, 5 by 5 or 7 by 7 magic square

The Wikipedia suggests this possible algorithm for generating a magic square.

A method for constructing a magic square of odd order

Starting from the central column of the first row with the number 1, the fundamental movement for filling the squares is diagonally up and right, one step at a time. If a filled square is encountered, one moves vertically down one square instead, then continuing as before. When a move would leave the square, it is wrapped around to the last row or first column, respectively.

An Algorithm for generating a 5 by 5 magic square:

1. Declare a 5 by 5 array and initialize its values to 0

2. Assign 1 to middle column of the first row

3. for numbers from 2 to 25 repeat following

· move one row up and one column to the right

· if your moves takes you of the board at the top, do the same move in the last row

· if your moves takes you of the board at the right, do the same move in the first column

· if the position is free (still has a zero in it) assign the number to the position

otherwise, move one row down and assign the number

