Strings in C++

1. Declaring, initializing, assigning and concatenating strings

A string is a series of characters treated as a single unit. Also, you can look at it as an array of characters.

To declare a string in C++ we can use its string library that defines a class called string .

string string_name;//declare a string

There are several ways that you can use to initialize a string:

· by entering it from the keyboard using cin statement; for example: cin >> s1;

· by using the string classes constructor function (simply enter the string in a set of double quotes following its declaration); for example: string s2(“cat”);

· by using an assignment statement; for example: s3 = s1;

· by using getline(cin, string_name) command if the string has more than one word

The simplest way to concatenate (append) two strings is to use overloaded addition operator. For example to append s2 to the end of s1 it is enough to write s1 + s2.

Example 1. Write a program that declares three strings. First one should be initialized from the keyboard to contain your name, second one should be initialized by using the string classes constructor function to contain your last name. The third one should be initialized by using the assignment statement so that it contains your first and your last name.

Print all three strings on the screen using a cout statement. Also, print your initials as well.

Example 2. Write a program that declares a string and initializes it to “Happy New Year” by using the keyboard. Output the string on the screen.

Example 3.

What is the output of the following code?

#include <iostream>

#include <string>

using namespace std;

int main()

{

string s1;

string s2;

string s3;

string s4("cat");

getline(cin,s1);

cin >> s2;

cout << endl;

cout << s1<< endl;

cout << s2<< endl;

s3 = s1 + s2;

cout << s3<< endl;

s2+=s4;//s2 = s2 + s4

cout << s2 <<endl;

return 0;

}

As you will see in the following example, it is possible to declare an array of strings

Example 4.

Write a program that uses random-number generation to create sentences. The program should use four arrays of pointers to char called article, noun, verb and preposition. The program should create a sentence by selecting a word at random from each array in the following order: article, noun, verb, preposition, article and noun. as each word is picked it should be concatenated to the previous words in an array that is large enough to hold the entire sentence. The words should be separated by spaces. The program should generate 20 sentences. You can use the following declaration:

 string article[5] = { "the", "a", "one", "some", "any" };

 string noun[5] = { "boy", "girl", "dog", "town", "car" };

 string verb[5] = { "drove", "jumped", "ran", "walked", "skipped" };

 string preposition[5] = { "to", "from", "over", "under", "on" };

 string sentence ;

2. String Manipulation functions

Finding length of a string

To find the length of a string you can use length function from the string library.

Its syntax is

str_name.length()

For example to find the length of a string s1 containing your last name, it is enough to write

cout << s1.length();

Example 1.

Write a program that prints “Happy New Year” with one empty space between each character.

Comparing strings

To compare two strings use the following syntax:

string1_name.compare(string2_name)

The function compares s1 and s2, returns 0 if s1 and s2 are the same, -1 if s1< s2, and 1 if s1 > s2

Example 1.

Declare three strings s1, s2 and s3 and initialize them. Now compare the strings. What is actually being compared?

Example 2.

What is the output of the following code?

int main()

{

 string s1("every");

 string s2("day");

 string s3 ("dayton");

 cout << s1.compare(s2) << endl;

 cout << s1.compare(s3) << endl;

 cout << s2.compare(s3) << endl;

 return 0;

}

Example 3.

Write a program that lets a user enter 10 strings and sorts them alphabetically.

If you are using a bubble sort you may want to use another string manipulation function available:

string1_name.swap(string2_name)

Retrieving a substring from a string

To obtain a portion of a string you can use substr function. Its syntax is:

stingr_name.substr(starting_position, length)

The following code demonstrates the use of the command.

using namespace std;

int main()
 {
string s("The airplane flew away.");

// retrieve the substring "plane" which
// begins at subscript 7 and consists of 5 elements
cout << s.substr(7, 5) << endl;

 return 0;
}

Example 1.Create a program that reverses a string entered by the user.

Example 2: Use the above functions to determine whether a string entered by the user is an exact palindrome (including spaces and punctuation). For example, “able was I ere I saw elba” would be a palindrome as would “racecar” but “Madam I’m adam” and “12341234” would not be.

Example3: Write a program that reads a five-letter word from the user and produces all possible three-letter words that can be obtained from the letters of the five-letter word.

Finding a substring in a string

To find a substring in a string we can use find function. Its syntax is

string_name.find(substring)

The function returns starting position if the substring is found, 0 otherwise max size of a string is returned.

Example 0.

Declare and initialize a string s1 to “Happy New Year”. Find the position at which the word Year appears. Also, try to search for a substring that does not appear in the s1.

Example 1.

Enter a string consisting of two words. Output the two words on separate lines.

Example 2.

Enter a string consisting of a complete sentence. Output all the words on separate lines.

Example 3.

Repeat the previous example by writing a function called separator that will perform the separation of the words for you.

Example 4.

Write a function that will transform a word entered by a user by taking its last letter and inserting it in the front of the word.

For example, word should become dwor

Example 5.

“To form a pig Latin phrase from an English language phrase, the translation proceeds one word at a time. To translate an English word into a pig Latin word, place the first letter of the English word at the end of the English word, and add the letters “ay.” Thus the word “silence” becomes “ilencesay,” the word “the” becomes “hetay,” and the word “alter” becomes “lteraay.” Blanks between words remain as blanks.”

1. use getline to enter the english sentance

2. while there is a blank space

-find the first blank space, i.e. the first word

-translate the word to pig patin and append it to the latin sentance

- reduce the english sentance by getting rid of the first word

3. print the pig latin sentence

Make the following assumptions: the English phrase consists of words separated by blanks, there are no punctuation marks and all words have two or more letters. Create a program that inputs a string from the user and translates it into pig Latin.

Example 6

AmeriCanadian

Americans spell differently from Canadians. Americans write "neighbor" and "color" while Canadians write "neighbour" and "colour”. Write a program to help Americans translate to Canadian. Your program should interact with the user in the following way. The user should type a word (not to exceed 64 letters) and if the word appears to use American spelling, the program should echo the Canadian spelling for the same word. If the word does not appear to use American spelling, it should be output without change. When the user types "quit!" the program should terminate.

The rules for detecting American spelling are quite naive: If the word has more than four letters and has a suffix consisting of a consonant followed by "or", you may assume it is an American spelling, and that the equivalent Canadian spelling replaces the "or" by "our". Note : you should treat the letter "y" as a vowel.

Keyboard input and screen output is expected.

Sample session. User input in italics.

Enter words to be translated:

color

colour

for

for

taylor

taylour

quit!

Summary of the string manipulation functions:

	Function
	Purpose
	Syntax

	length
	Returns the length of the string
	str_name.length()

	substr
	Returns a portion of a string
	str_name.substr(starting_position, length)

	compare
	Compares s1 and s2, returns 0 if s1 and s2 are the same, -1 if s1< s2, 1 if s1 > s2
	str1_name.compare(str2_name)

	swap
	Swaps two strings
	str1_nameg1.swap(str2_name)

	find
	Searches for a substring. Returns starting position if the substring is found, max size of a string otherwise
	str_name.find(substring)

str_name.rfind(substring)

str_name.find_first_of(substring)

str_name.find_last_of(substring)

	erase
	Erases all the characters starting with a particular position
	str_name.erase(starting position,ending position)

s1.erase(pos,n)

Erases a sequence of n characters starting at position pos. Notice that both parameters are optional: with only one argument, the function deletes everything from position pos forwards, and with no arguments, the function deletes the entire string.

	append
	Appends (concatenates) s2 to the end of s1
	str1_name.append(str2_name)

	insert
	Inserts one string into another
	str1_name.insert(starting position, str2_name)

