Recursive functions

A recursive function is a function that calls itself. It is called to solve a problem. The function actually knows how to solve only the simplest case, or so-called base case. If the function is called with a base case, the function simply returns a result. If the function is called with a more complex problem, the function divides the problem into two pieces: a piece that the function knows how to do and a piece that the function does not know how to do. The second piece is usually simpler version of the original problem. Because this new problem looks like the original problem, the function calls a fresh copy of itself to go to work on the smaller problem - this is referred to as a recursive call and is also called the recursion step. The recursion step also includes the keyword return, because its result will be combined with the portion of the problem the function knew how to solve to form a result that will be passed back to the original caller, possibly main.

The recursion step executes while the original call to the function is still open, i.e., it has not yet finished executing. The recursion step can result in many more such recursive calls as the function keeps dividing each new sub problem with which the function is called into two pieces. In order for the recursion to eventually terminate, each time the function calls itself with a slightly simpler version of the original problem this sequence of smaller and smaller problems must eventually converge to the base case. At that point, the function recognizes the base case, returns a result to the previous copy of the function and a sequence of returns continues all the way up the line until the original call of the function eventually returns the final result to main. 

Practice questions:

Example 1. Write a program that finds the sum of first n numbers by calling a function called sum. The function should be implemented recursively.

Example 2. Write a recursive function that finds n! . 


       Just to remind you: n! = n(n-1)(n-2)…1.

Example 3. Write a recursive C++ function that for a given base x and exponent n finds the power xn. 

Example 4. Write a recursive function called multiply that multiplies two integers a and b.

Example 5. The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, …  begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum of the previous two Fibonacci numbers. Write a C++ program that finds n-th element of Fibonacci sequence.

Example 6. Write a recursive function gcd that returns the greatest common divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x%y), where % is the modulus operator.

Example 7.
Before you attempt the next question go to http://www.mathsisfun.com/games/towerofhanoi.html and try to play the game.

a) While playing try to find an optimal solution, meaning the least number of steps required to transfer all the disks from starting peg to the finishing one.

b) What is the minimum number of moves needed to transfer 2 disks? 3 disks? 4 disks? n disks?

Extra challenge:

Example 8.
An ancient myth tells us that there is a tower in Hanoi where monks are transferring 64 gold disks from one peg to another, according to the following rules:

The Tower consists of three pegs mounted on a board together with the disks of different size, with the largest on the bottom. The rules of the puzzle allow disks to be moved one at a time from one peg to another as long as a disk is never placed on top of a smaller disk. The goal of the puzzle is to have all the disks on the third peg in order of size, with the largest on the bottom.

Supposedly, the world will end when the priests complete their task.

Write a C++ program to solve Towers of Hanoi problem. Use a recursive function with four parameters:





a) the number of disks to be moved (height of the Tower)




b) the peg on which the disks are initially placed




c) the peg to be used as a temporary holding area




d) the peg to which this stack of disks is to be moved

Your program should print the precise instructions it will take to move the disk from the starting peg to the destination peg. For example, to move a stack of two disks from peg 1 to peg 3, your program should print the following sequence of moves:

1 to 2 (this means move one disk from peg 1 to peg 2)

1 to 3

2 to 3

A recursive strategy:

Step 1: Move n-1 disks from peg 1(starting peg)  to peg 2 (ending peg) , using peg 3 (temporary peg) as a temporary holding area

Step 2: Move the last disk from peg 1(staring)  to peg 3(temporary)

Step 3: Move the n-1 disk from peg 2 (ending) to peg 3 temp, using 1 as a temporary holding area

