Polymorphism

Introduction

Polymorphism is accomplished by overloading of functions and operators as discussed previously and by using inheritance and virtual functions.

Suppose a set of Shape classes such as Circle, Triangle, Rectangle, and Square are all derived from base class Shape. Suppose that each of the derived classes has its own draw function. When drawing any of these shapes, it would be nice to be able to treat all these shapes generically as objects of the base class Shape. Then to draw any of the shapes, we could simply call function draw of the base class Shape and let the program determine dynamically (at run-time) which derived class draw function to use.

To enable this, we declare draw in the base class as a virtual function and we override draw in each of the derived classes to draw the appropriate shape. A virtual function is declared by preceding the function’s prototype with the keyword virtual in the base class.

Example 1:
 virtual void draw();

may appear in base class Shape

Virtual Functions

Let us see one example that uses a virtual function:

[image: image1.png]virt - Microsoft Visual C++ - [virt.cpp] -

B Ele Edit View Insert Project ooks Window Help

B sEE | me (- RER S e
|[tecaet [dabalmembers) <[¢ main =M -

R

x| Finclude <iostreams

using namespace std:

class basel {
public
virtual void printfunc(){
cout << 'This is basel's printfunc() \n':

¥
class derivedl: public basel {
public
void printfunc(){
cout << 'This is derivedl's printfuns().\n":
¥
class derived? : public basel {
public
void printfunc(){
cout << 'This is derived2's printfuns().\n":
¥
int main(){
basel *p. b
derived] d:

derivedz d2}

b://point to base
p->printiunc();//access base's printfunc()

Al;//point to derivedl
Po>printiunc();//access derivedl's printfuns()

A2;//point to derivedl
Po>printfunc();//access derived2's printfuns()

4 return 0:}

oy [Rreven] |1

=

d|conpiling
virt.cop

Linking

Configuration: virt - Win3Z Debug:

virt exe - 0 error(s). 0 warning(s)

[T euita (Debug Find m s T\ Find nFlee), s Tl

o
o

In27.Col25 [RECCOL[OVA [READ

Example 2:

#include <iostream>
using namespace std;

class animal{

public:

virtual void sound(){

cout<<"hi";

};

protected:

int eyecolor;

int tail;

};

class Cat: public animal{

public:

void sound(){

cout<<"Meow";

}

protected:

int age;

string owner;

};

class Dog: public animal{

public:

void sound(){

cout<<"Bao,Bao";

}

};

int main(){

animal *Ana;

animal Baba;

Cat Boni;

Dog Doni;

Ana=&Baba;

Ana->sound();

cout<<endl;

Ana=&Boni;

Ana->sound();

cout<<endl;

Ana=&Doni;

Ana->sound();

cout<<endl;

return 0;

}

If you still do not understand polymorphism watch this video:
http://www.youtube.com/watch?v=R_PPA9eejDw
http://www.youtube.com/watch?v=DudHooleNVg
Problem 1:

Define base class animal, and its derived classes fish, bird, and mammal. The class animal should have a virtual function print(), which will be inherited by all derived classes, and a protected data member numberlegs.

The output should be like this:

A fish has 0 legs.

A bird has 2 legs.

A mammal has 4 legs.

Problem 2:
Create a class employee with functions firstname, lastname and salary. Create three derived classes: parttimeemployee, fulltimeemployee and boss. All of them override functions firstname, lastname and salary. Using pointers output the names and the salary of each employee.
Problem 3:
Create a problem where you can implement polymorphism.

